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Abstract
We investigate the three-dimensional O(2) model near the critical point by
Monte Carlo simulations and calculate the major universal amplitude ratios of
the model. The ratio U0 = A+/A− is determined directly from the specific
heat data at zero magnetic field. The data do not, however, allow us to extract
an accurate estimate for α. Instead, we establish a strong correlation of U0

with the value of α used in the fit. This numerical α-dependence is given
by A+/A− = 1 − 4.20(5)α + O(α2). For the special α-values used in other
calculations, we find full agreement with the corresponding ratio values, e.g.
that of the shuttle experiment with liquid helium. On the critical isochore,
we obtain the ratio ξ+/ξ−

T = 0.293(9), and on the critical line the ratio
ξc
T

/
ξc
L = 1.957(10) for the amplitudes of the transverse and longitudinal

correlation lengths. These two ratios are independent of the α- or ν-values
used here.

PACS numbers: 64.60.Cn, 75.40., 05.50+q, 05.10.Ln, 02.60.Cb

1. Introduction

In quantum field theory and condensed matter physics O(N) symmetric vector models play
an essential part, because they are representatives of universality classes for many physical
systems. The universal properties of the O(N) models—the critical exponents and amplitude
ratios, which describe the critical phenomena—are therefore of considerable importance. In
three dimensions, the case N = 2 is a special one: it is the first vector model (with increasing
N ) showing Goldstone effects, and the exponent α, which controls the critical behaviour of
the specific heat, is very close to zero. In fact, if one plots α versus N, as determined by field
theory methods [1–4], then the function is approximately linear in N and becomes negative
just below N = 2. The proximity of α to zero also made it difficult to determine the type of
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singularity for the specific heat in real systems. Indeed, for the lambda transition of helium a
nearly logarithmic singularity (corresponding to α = 0) was first measured [5] and a similar
behaviour was found at the gas–liquid critical point [6]. However, with the experimental
precision reached nowadays, especially that of the spectacular shuttle experiment with liquid
helium [7, 8], there is no doubt that the critical exponent α is very small, but non-zero, and
because it is negative the peak of the specific heat is finite.

In this paper we calculate, among other quantities, the specific heat from Monte Carlo
simulations. The determination of α from these data poses, as we shall see, similar problems
as in experiments. Of course, there is only one value of α for the 3D O(2)-universality class,
but it is unclear what the correct value is (see e.g. the survey in table 19 of [9]). We therefore
pursue the strategy of calculating the universal ratios from our data for different α-values in
the range where the actual value most probably is. The strongest dependence on the α used is
expected for fits involving the universal amplitude ratio A+/A− of the specific heat. The same
is true for all theoretical determinations [10, 11] of this ratio. Apart from A+/A− we derive
from our simulations other universal quantities and amplitude ratios, which characterize the
O(2)-universality class in three dimensions.

The model which we investigate is the standard O(2)-invariant nonlinear σ -model (or
XY model), which is defined by

βH = −J
∑
〈x,y〉

�φx · �φy − �H ·
∑

x

�φx. (1)

Here x and y are the nearest-neighbour sites on a three-dimensional hypercubic lattice, �φx is
a two-component unit vector at site x and �H is the external magnetic field. We consider the
coupling constant J as inverse temperature, that is J = 1/T . Instead of fixing the length of
the spin vectors �φx to 1 we could have introduced an additional term

∑
x

[ �φ2
x + λ

( �φ2
x − 1

)2]
on

the right-hand side of equation (1). By choosing an appropriate λ value [12] it is then possible
to eliminate leading-order corrections to scaling. As it will turn out, these corrections are
negligible in the energy density and marginal in the specific heat also with the Hamiltonian from
equation (1). Moreover, we want to combine amplitudes obtained from former simulations at
non-zero magnetic field [13] using the same Hamiltonian with the amplitudes we determine
now in order to calculate universal ratios.

As long as H = | �H | is non-zero, one can decompose the spin vector �φx into a longitudinal
(parallel to the magnetic field �H ) and a transverse component,

�φx = φ‖
x �eH + �φ⊥

x , with �eH = �H/H. (2)

The order parameter of the system, the magnetization M, is then the expectation value of the
lattice average φ‖ of the longitudinal spin component,

M =
〈

1

V

∑
x

φ‖
x

〉
= 〈φ‖〉. (3)

Here, V = L3 and L is the number of lattice points per direction. There are two types
of susceptibilities. The longitudinal susceptibility is defined as usual by the derivative of
the magnetization, whereas the transverse susceptibility corresponds to the fluctuation of the
lattice average �φ⊥ of the transverse spin component,

χL = ∂M

∂H
= V (〈φ‖2〉 − M2) (4)

χT = V 〈 �φ⊥2〉. (5)
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The total magnetic susceptibility is

χ = χL + χT . (6)

At zero magnetic field, H = 0, there is no longer a preferred direction and the lattice
average of the spins

�φ = 1

V

∑
x

�φx (7)

will have a vanishing expectation value on all finite lattices, 〈 �φ〉 = 0; the longitudinal and
transverse susceptibilities become equal for T > Tc and diverge for T < Tc because of the
Goldstone modes [13]. Nevertheless we can use �φ to define the total susceptibility and the
Binder cumulant by

χ = V 〈 �φ2〉 (8)

gr = 〈( �φ2)2〉
〈 �φ2〉2

− 3. (9)

For T > Tc we have χ = 2χL = 2χT . We approximate the order parameter M for H = 0
by [14]

M � 〈| �φ|〉. (10)

On finite lattices, the magnetization of equation (10) approaches the infinite volume limit from
above, whereas M as defined by equation (3) for H �= 0 reaches the thermodynamic limit from
below.

In our zero field simulations, we want to measure three further observables: the energy
density, the specific heat and the correlation length. The energy of a spin configuration is
simply

E = −
∑
〈x,y〉

�φx · �φy (11)

and the energy density ε is then

ε = 〈E〉/V . (12)

For the specific heat C we obtain

C = ∂ε

∂T
= J 2

V
(〈E2〉 − 〈E〉2). (13)

The second moment correlation length is calculated from the formula

ξ2nd =
(

χ/F − 1

4 sin2(π/L)

)1/2

(14)

where F is the Fourier transform of the correlation function at momentum pµ = 2πêµ/L, and
êµ a unit vector in one of the three directions,

F = 1

V

〈∣∣∣∣∣∑
x

exp(ipµx) �φx

∣∣∣∣∣
2〉

. (15)

In the simulations, we compute F from an average over all three directions. Strictly speaking,
equation (14) can only serve as a definition of the correlation length for T > Tc, because the
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exponential correlation length diverges for H → 0 and T < Tc. Instead, it is possible to
introduce a transverse correlation length ξT on the coexistence line [15], which is connected
to the so-called stiffness constant ρs for d = 3 by

ξT = ρ−1
s for H = 0 T < Tc. (16)

We explain later how to calculate ρs . For H �= 0 there are two exponential correlation lengths,
a transverse (ξT ) and a longitudinal one (ξL). Their second moment forms may be computed
again from equation (14) by replacing χ and F with their respective transverse or longitudinal
counterparts.

The rest of the paper is organized as follows. First, we discuss the critical behaviour of the
observables and define the universal amplitude ratios, which we want to determine. In section 3
we describe our simulations at H = 0, the results for the Binder cumulant, the critical point
and the correlation length. Then we analyse the data for the energy and the specific heat. In
section 4 we discuss as an alternative the calculation of A+/A− from the equation of state,
which was obtained from non-zero field simulations. Section 5 serves to find the specific heat
and the correlation lengths at Tc, as well as the stiffness constant, from H �= 0 simulations.
We close with a summary of the ratios and the conclusions.

2. Critical behaviour

In the thermodynamic limit (V → ∞) the observables show power law behaviour close to Tc.
It is described by critical amplitudes and exponents of the reduced temperature t = (T −Tc)/Tc.
Note that we use here another definition of t than in [13]. We will mention this point again
later. The scaling laws at H = 0 are
for the magnetization

M = B(−t)β for t < 0 (17)

for the longitudinal susceptibility

χL = C+t−γ for t > 0 (18)

for the transverse correlation length

ξT = ξ−
T (−t)−ν for t < 0 (19)

for the correlation length

ξ = ξ+t−ν for t > 0 (20)

for t → ±0 the energy density

ε = εns + Tct

(
Cns +

A±

α(1 − α)
|t|−α

)
(21)

and the specific heat

C = Cns +
A±

α
|t|−α. (22)

The specific heat and the energy density contain non-singular terms Cns and εns , which are
due to derivatives of the analytic part fns of the free energy density. They are the values of
the specific heat and energy density at Tc. With our definition for the specific heat amplitudes,
we have already singled out their main α-dependences, the remaining factors A± are only
moderately varying with α.
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On the critical line T = Tc or t = 0 we have for H > 0 the scaling laws

M = dcH
1/δ or H = DcM

δ (23)

and for the longitudinal and transverse correlation lengths ξL,T

ξL,T = ξc
L,T H−νc νc = ν/βδ. (24)

The specific heat scales as

C = Cns +
Ac

αc

H−αc αc = α/βδ. (25)

We assume the following hyperscaling relations among the critical exponents to be valid:

2 − α = dν γ = β(δ − 1) dν = β(1 + δ). (26)

As a consequence, only two critical exponents are independent. Because of the hyperscaling
relations and the already implicitly assumed equality of the critical exponents above and below
Tc, one can construct a multitude of universal amplitude ratios [15] (see also the discussion in
[9]). The following list of ratios contains those which we want to determine here,

U0 = A+/A− Uξ = ξ+/ξ−
T (27)

R+
ξ = (A+)1/dξ+ RT

ξ = (A−)1/dξ−
T (28)

Rχ = C+DcB
δ−1 RC = A+C+/B2 (29)

and

RA = AcD
−(1+αc)
c B−2/β QT

2 = (
ξc
T

/
ξ+

)γ /ν
C+/dc(1/δ + 1). (30)

One of the ratios, Rχ , was already calculated by us from non-zero magnetic field simulations
[13], using the exponents of [12]. We found

Rχ = 1.356(4). (31)

In order to normalize the equation of state, the temperature and the magnetic field in the same
paper, we computed the critical amplitudes of the magnetization on the coexistence line and
the critical line with the result

B = B̂T β
c = 1.245(7) dc = 0.978(2) Dc = 1.11(1) (32)

where B̂ = 0.945(5). The value for Jc = T −1
c = 0.454 165 was taken from [16].

3. Simulations at H = 0

All our simulations were done on three-dimensional lattices with periodic boundary conditions.
As in [13] we have used the Wolff single cluster algorithm. The main part of the H = 0 data
was taken from lattices with linear extensions L = 24, 36, 48, 72, 96 and 120. Between the
measurements, we performed 300–800 cluster updates to reduce the integrated autocorrelation
time τint. Apart from the largest lattice (L = 120) where we made runs only at six couplings,
we generally scanned the neighbourhood of Jc by runs at more than 30 points on each
lattice, with special emphasis on the region 0.454 14 � J � 0.454 19. This enabled a
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g
r

Figure 1. The Binder cumulant gr from equation (9) as a function of the coupling J . The curves
were obtained by reweighting the data. With increasing lattice size L = 24, 36, 48, 72 and 96, the
slope of the respective curve increases close to the critical point. The vertical dashed line denotes
Jc from [16].

Table 1. Survey of the Monte Carlo simulations at H = 0 for different lattices. Here NJ is the
number of different couplings at which runs were performed; τint is the integrated autocorrelation
time for the energy and Nmeas the number of measurements per coupling in units of 1000.

L J -range NJ Nmeas (1000) τint (t < 0) τint (t ≈ 0) τint (t > 0)

24 0.440–0.4675 35 �100 1–3 1–3 1–3
36 0.440–0.4650 43 �100 1–4 2–3 2–10
48 0.442–0.4650 55 �100 1–5 2–5 4–13
72 0.4465–0.460 41 80–100 1–4 4–8 7–21
96 0.450–0.4567 33 60–80 2–10 6–7 7–35

120 0.452–0.4562 6 20 2–4 14 12–23

comfortable reweighting analysis of the data. More details of these simulations are presented in
table 1.

3.1. The critical point and the Binder cumulant

It is obvious that any determination of critical amplitudes relies crucially on the exact location of
the critical point. Since we have produced a considerable number of data in the neighbourhood
of the critical point, it was natural to verify first the rather precise result of Ballesteros et al [16].
We have done this by studying the Binder cumulant gr , which is directly a finite-size-scaling
function:

gr = Qg(tL
1/ν , L−ω). (33)

The function Qg depends on the thermal scaling field and on possible irrelevant scaling fields.
Here we have specified only the leading irrelevant scaling field proportional to L−ω, with
ω > 0. At the critical point, t = 0, gr should therefore be independent of L apart from
corrections due to these irrelevant scaling fields. In figure 1 we show our results for gr as
obtained by reweighting the direct data. We observe, at least on the scale of figure 1, no
deviation from the scaling hypothesis. However, after a blow-up of the close vicinity of the
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0.454200.454190.454180.454170.454160.45415

-1.755

-1.760

-1.765

J

g
r

Figure 2. The Binder cumulant gr in the close neighbourhood of the critical point. The figure
is an enlargement of figure 1. The dashed lines accompanying the solid lines show the jackknife
error corridor.

0.0 0.0001 0.0002

0.45419

0.45418

0.45417

0.45416

0.45420

s(L,b)

J
ip

Figure 3. The coupling Jip at the intersection point of gr(L) and gr(bL) for various combinations
of L and b as a function of s(L, b), equation (34). The full (open) symbols were calculated with
ν = 0.669 (0.673). The dashed (solid) lines are linear fits with (without) the L = 96 intersection
points, denoted here by triangles.

critical point, as shown in figure 2, we can see that the intersection points between curves
from different lattices are not coinciding. The shift �J of the crossing point from the infinite
volume critical coupling Jc can be estimated by expanding the scaling function Qg to the
lowest order in both variables. For two lattices with sizes L and L′ = bL one gets

�J L,L′ ∝ s(L, b) = 1 − b−ω

b1/ν − 1
L−ω−1/ν . (34)

In figure 3 we have plotted the J -values of the intersection points for each pair of lattices
as a function of the variable s(L, b) of equation (34). For ω we used the value 0.79(2) of
[12], and for ν we chose the two values ν = 0.669 and 0.673 as bounds of the probable
ν-range. Of course, the intersection points are completely independent of ν and ω. Only the
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0.0 0.100.05

-1.756

-1.758

-1.760

-1.762

-1.764

-1.766 s
o
(L,b)

g
r,ip

Figure 4. The Binder cumulant gr,ip at the intersection point for various combinations of L and b
as a function of so(L, b), equation (36). The dashed (solid) lines are linear fits with (without) the
L = 96 intersection points, denoted here by triangles.

variable s(L, b) changes when the exponents are changed. As can be seen in figure 3 also, the
extrapolation to the critical point Jc for L → 0 (or s(L, b) → 0) is unaffected by the choice
of ν. The same applies to a variation of ω. Since the slope of gr(L = 96) close to the critical
point is rather large, a small numerical uncertainty might shift the intersection points with the
other curves considerably. We have therefore determined Jc also by fits excluding the results
from the largest lattice. Thus we arrive at the final estimate

Jc = 0.454 167(4) (35)

in full agreement with the result Jc = 0.454 165(4) of Ballesteros et al [16]. In order to be
consistent with our previous papers, we use in the following again the value from [16].

In a similar manner, one can determine from the same data the universal value gr(Jc).
Here the difference of the gr -values at the intersection points to gr(Jc) is

�gL,L′
r ∝ so(L, b) = b1/ν − b−ω

b1/ν − 1
L−ω. (36)

In figure 4 we show the extrapolation of gr to the critical point value at so(L, b) = 0. A
variation of ω in the range 0.77–0.81 leads only to a shift of 10−4. The new variable so(L, b)

is practically independent of ν; the influence of ν is not visible in figure 4. Comparing again
extrapolations with and without the L = 96 points, one obtains

gr(Jc) = −1.758(2) or
〈( �φ2)2〉
〈 �φ2〉2

(Jc) = 1.242(2) (37)

well in accord with the result of [11] (see also the long discussion in [17]).

3.2. The correlation length

In our H = 0 simulations, we have measured the correlation length using the second moment
formula, equation (14). The finite-size-scaling equation for ξ is

ξ = LQξ(tL
1/ν , L−ω) (38)
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0.44  0.45  0.46  0.47
0

0.5

1.0
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J

/L
 96

 72    

 48    

 36

 24

Figure 5. The correlation length ξ divided by L versus J for L = 24, 36, 48, 72 and 96. The solid
lines were calculated by reweighting the data. The dashed vertical line gives the position of Jc,
and the horizontal one gives the universal value, equation (39).

and ξ/L = Qξ is a scaling function such as gr , that is its value at the critical point is universal
for L → ∞. In figure 5 we have plotted our correlation length data divided by L. Here formula
(14) has also been evaluated for J > Jc or T < Tc though in this region the data cannot be
identified with the correlation length. We see again that all curves intersect at the previously
determined critical point. A closer look into the neighbourhood of Jc reveals however similar
corrections to scaling as in the case of gr . The corresponding extrapolation of the variable
so(L, b) to zero leads for ξ/L to

ξ/L (Jc) = 0.593(2). (39)

This result confirms nicely the value ξ/L = 0.5927 from the preliminary simulations
mentioned in [12].

Our data for the correlation length can also be used to find the critical amplitude ξ+ of
equation (20). To this end, we use a method described in detail in [18]. We briefly repeat the
main arguments assuming for simplicity that there are no corrections to scaling. An observable
O with critical behaviour approaches for either positive or negative t and L → ∞ the limiting
form

O∞ = a0|t|−ρ for |t| → 0 (40)

where a0 is the critical amplitude and ρ the critical exponent. At finite L the observable
satisfies a scaling relation

O(t, L) = Lρ/νQO(xt) with xt = tL1/ν . (41)

Here, QO is the finite-size-scaling function of O. In order to ensure the correct thermodynamic
limit for fixed small |t|, we must have the relation

O∞ = |t|−ρ lim
xt →±∞ |xt |ρQO(xt). (42)

The sign of xt is of course the same as that of t. It is clear then, that the function

AO(xt) = |xt |ρQO(xt) (43)

will converge asymptotically to the critical amplitude a0. Moreover, a0 will be an extreme
value of AO(xt).
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 36
 24

Figure 6. The amplitude function Aξ , equation (43), of the correlation length versus the scaling
variable xt for ν = 0.671 and L = 24, 36, 48, 72 and 96. The horizontal line indicates the
ξ+-value.

0  0.01 0.02

0.480

0.485

0.490

0.495

-

+

Figure 7. The critical amplitude ξ+, equation (20), of the correlation length versus −α. The
data (circles) are determined from the amplitude function Aξ (xt ); the solid line is the linear
fit (44).

We have applied this method to the correlation length results. In figure 6 we show Aξ(xt )

for the exponent ν = 0.671 and various L-values. We note that already at xt ≈ 4 a plateau
is reached and essentially no corrections to scaling are visible. The marginal spread of the
data in the plateau region leads only to a small error for the amplitude ξ+. Since the scaling
variable xt changes with ν there is however a ν-dependence, which can also be expressed
as a dependence on α, because of the hyperscaling relation 2 − α = dν. In fact, after
evaluating Aξ for several ν-values, we find that ξ+ is rather exactly a linear function of the α

used:

ξ+ = 0.4957(20) + 0.67(12)α. (44)

This can be seen in figure 7, where we compare the fit, equation (44), with some directly
determined ξ+-values.
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L

=0.671
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Figure 8. The energy density (a) and the specific heat (b) versus L at the critical point. The dashed
line shows εns and the solid lines show fits to equations (45) and (46) for ν = 0.671 and ω = 0.79.

3.3. Specific heat and energy density at Tc

As mentioned already in section 2, both the energy density and the specific heat contain
additional non-singular terms. This fact complicates of course the determination of the critical
amplitudes. We can however calculate the non-singular terms beforehand by a finite-size-
scaling analysis directly at the critical point. For this purpose, we have made further Monte
Carlo runs at Tc on 23 lattices with L = 8 to L = 160. In these runs, we took between 500 000
and 200 000 measurements each for L = 8–64 and on the larger lattices between 120 000
and 50 000. The data for the energy density and the specific heat are shown in figure 8 as a
function of L up to L = 120. If one expands the scaling functions for ε and C at Tc in powers
of L−ω, one obtains

ε(L) = εns + q0εL
(α−1)/ν (1 + q1εL

−ω + · · ·) (45)

C(L) = Cns + q0CLα/ν(1 + q1CL−ω + · · ·). (46)

We have fitted the first terms (up to q1) of these expansions to the data. In the case of the
energy density, we find no corrections to scaling, that is q1ε ≈ 0 and only small corrections for
the specific heat. Fits with different ν-values cannot be distinguished in figure 8. When we
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-150 -100 -50
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40

30

20

1/

C
ns

Figure 9. The non-singular part Cns of the specific heat versus 1/α from fits to equation (46)
(stars) with ω = 0.79. The solid line is from equation (54).

treat ν as a free fit parameter we get ν = 0.671(2). The quantity εns exhibits no noticeable
dependence on ν or α and ω. We find

εns = −0.988 41(3). (47)

The situation is quite different in the case of the specific heat. Its non-singular part varies from
about 50 for ν = 0.669 to 16 at ν = 0.675. The reason for this strong variation is that the
exponent α = 2 − 3ν is close to zero, when ν approaches 2/3. Then the background term Cns

develops a pole (∼1/α) which cancels a corresponding pole in the critical amplitude in such
a way that the characteristic critical power behaviour (∼|t|−α) turns over into a logarithmic
behaviour (∼ ln |t|).

This mechanism for the emergence of the logarithmic singularity as α → 0 is well known
(see [15, 19, 20]). We demonstrate it by assuming that

Cns(α) = c0
ns +

c
p
ns

α
(48)

A±(α) = a±
0 + a±

1 α + O(α2). (49)

If we insert these equations into equation (22) and expand |t|−α for small α, we obtain

C = c0
ns +

c
p
ns

α
+

(
a±

0

α
+ a±

1 + O(α)

)
(1 − α ln |t| + · · ·) (50)

= c0
ns +

c
p
ns + a±

0

α
+ a±

1 − a±
0 ln |t| + O(α). (51)

Evidently, the limit of C for α → 0 exists and has a logarithmic |t|-dependence, if the pole
term vanishes, which requires [19]

cp
ns = −a±

0 and a+
0 = a−

0 . (52)

The ratio A+/A− is therefore close to 1,

A+/A− = 1 + O(α). (53)

In figure 9 we show the non-singular part Cns of the specific heat resulting from fits to
equation (46) with ω = 0.79 and various values for α plotted versus 1/α. The χ2 per degree
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of freedom in each fit is 0.83(1), preferring no particular α-value. We see that indeed Cns is
linearly dependent on 1/α. A fit to the ansatz, equation (48), gives

Cns = 3.35(4) − 0.3175(5)

α
(54)

with an extremely small χ2/Nf of the order of 10−4. We conclude from this fact, that the pole
term behaviour of Cns is not a numerical accident, but underlines the previous considerations.
In order to study the influence of the correction exponent ω we have repeated the whole
analysis of C(L) for the values ω = 0.77 and ω = 0.81, that is a standard deviation away from
the central value 0.79. The χ2/Nf for each single fit to equation (46) is again 0.83(1), the new
values for Cns coincide within error bars with the values for ω = 0.79, however the resultant
linear fits in 1/α to equation (48) at fixed ω lead to slight changes (again with a χ2/Nf of the
order of 10−4)

Cns =
{

3.37(4) − 0.3165(5)/α for ω = 0.77

3.33(4) − 0.3184(5)/α for ω = 0.81
(55)

mainly for the pole term parameter c
p
ns .

In the following, we shall use the results for Cns to analyse as well the specific heat data
for T �= Tc. If not explicitly mentioned, the fit results have always been obtained for fixed
ω = 0.79. We have repeated the following analysis also for ω = 0.77 and 0.81 and shall
comment on any noticeable changes due to ω.

3.4. The specific heat and A+/A−

In figure 10 we have collected all of our specific heat data at zero magnetic field for the
L-values of table 1. We observe with increasing L a more and more pronounced peak close
to Jc. As already discussed in the introduction, we nevertheless expect a finite peak height
even in the thermodynamic limit, since the singular part of C vanishes at the critical point for
negative α. The peak (and not dip) behaviour implies also that the amplitude A±/α must be
negative, or that A± is positive. The previous analysis of the non-singular contribution to C
confirms this consideration: because c

p
ns is negative, we have a positive value a±

0 = a0 for
the leading part of A±. We have interpolated the data points by reweighting, apart from the
L = 120 results. The respective curves are plotted in figure 11 as a function of t. Compared
to figure 10 we have therefore an exchange of the high- (t > 0, J < 0) and low-temperature
(t < 0, J > 0) parts in the figures. In order to find the amplitudes A± we have made the
following ansatz including correction-to-scaling terms,

C = Cns +
A±

α
|t|−α

(
1 + c±

1 |t|ων + c±
2 t

)
. (56)

For a fit to the form (56) the curves from the largest lattices were used in those t-ranges which
appear hatched in figure 11, that is for −0.0233 � t � −0.0045 and 0.0048 � t � 0.0268.
The non-singular part from equation (54) was then taken as an input to the fit, whereas the
L = 120 data points served only as a check of the fit result. As an example we show in
figure 11 the fit for α = −0.013. Fits with other small, negative α-values work as well and
have the same χ2 per degree of freedom, namely 1.03. In table 2 we present details of the fits
for several α-values. The two correction-to-scaling contributions are always opposite in sign
and cancel therefore to some extent, especially in the high-temperature region. The amplitudes
A± are still α-dependent, though in our notation we have already taken the anticipated
pole behaviour into account. We find that A+ and A− are nearly linear functions of α.
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Figure 10. The specific heat data for different L versus the coupling J . The dashed line indicates
the position of the critical point.
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Figure 11. The specific heat versus the reduced temperature t for L = 36, 48, 72, 96 and 120
(stars). The solid lines were calculated by reweighting the data; the peak height increases with L.
The line with long dashes is the fit from the ansatz, equation (56), for α = −0.013 and ω = 0.79.
The hatched areas show the fit regions.
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Figure 12. The amplitudes A+ and A− versus −α (squares). The full circle is the value expected
from Cns ; the lines are the parametrizations (58) and (59).

Table 2. The parameters of the fits to equation (56) for ω = 0.79 and some selected α-values. The
errors were obtained by Monte Carlo variation of the parameters of Cns in equation (54).

α A+ c+
1 c+

2 A− c−
1 c−

2

−0.007 0.3416(4) 0.020(1) −0.041(1) 0.3317(4) 0.048(1) 0.086(1)
−0.013 0.3636(6) 0.022(1) −0.049(2) 0.3445(6) 0.085(1) 0.161(2)
−0.017 0.3790(8) 0.015(1) −0.041(3) 0.3533(8) 0.109(2) 0.211(4)
−0.019 0.3870(9) 0.010(2) −0.033(4) 0.3578(9) 0.120(2) 0.237(5)
−0.025 0.4117(13) −0.016(3) 0.006(6) 0.3718(13) 0.151(4) 0.312(9)

The α-dependence of the fit results for the amplitudes is shown in figure 12. A parametrization
of the amplitudes as suggested by equations (49) and (52),

A± = a0 + a±
1 α + a±

2 α2 (57)

works extremely well, as can be seen in figure 12, and confirms explicitly the cancellation of
the pole terms as predicted in equation (52). If A+ and A− are independently fitted, that is with
perhaps different a0, we get a+

0 = 0.3176(12) and a−
0 = 0.3175(12). The final result is found

by using equation (57) with fixed a0 = 0.3175 (the error in a0 = −c
p
ns is already included in

the errors of the A±-values, which are now parametrized). We obtain

A+ = a0 − 3.308(36)α + 18.4(2.2)α2 (58)

A− = a0 − 1.975(36)α + 7.8(2.2)α2. (59)

At this point it is appropriate to discuss the influence of an ω-variation on A+ and A−. From
equation (55) we know that a shift in ω of size �ω = 0.02 shifts the pole term parameter c

p
ns

by about 0.3% and therefore we expect a shift of a0 by the same amount. In fact that is exactly
what happens and it is the only effect, because the new parameters a±

1 and a±
2 coincide inside

error bars with the values found for ω = 0.79. All in all that results in a common shift of the
A+- and A−-curves in figure 12 by again 0.3%. As a consequence, the universal amplitude
ratio A+/A− becomes essentially independent of ω.

The universal ratio A+/A− is sometimes given in terms of a function P(α) [21],

A+/A− = 1 − Pα. (60)
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Figure 13. The universal ratio A+/A− versus −α. The solid line is obtained from equations (58)
and (59), and the diamonds are by direct calculation from table 2. The other symbols denote results
from the shuttle experiment (square) [7, 8], from Campostrini et al (circles) [10, 11], from Larin
et al (star) [24] and Kleinert et al (plus) [25].

Expanding the ratio in powers of α we arrive at the following relation for P(α):

P = 1

α

(
1 − A+

A−

)
= a−

1 − a+
1

a0
+

[
a−

2 − a+
2

a0
− a−

1

a0

a−
1 − a+

1

a0

]
α + · · · (61)

that is P goes to a finite limit when α → 0 [21, 22]. In fact, there is a phenomenological
relation [9, 23]

A+/A− = 1 − 4α (62)

predicting P = 4. Evaluating equations (58) and (59) leads to

A+/A− = 1 − 4.20(5)α + · · · (63)

rather close to relation (62). In figure 13 we show the ratio and compare it with former
results from the shuttle experiment [7, 8] as well as some analytical determinations [10, 11,
24, 25]. We note that our ratio result is in complete accordance with all of the other ratio
results. Obviously, they differ among each other simply and solely by assuming different
α-values. This conclusion was already reached by Campostrini et al [10]; we can however
directly confirm it with equations (58) and (59).

4. A+/A− from the equation of state

The magnetic equation of state describes the critical behaviour of the magnetization in the
vicinity of Tc. As already noted by Widom [19] and Griffiths [22] long ago, the equation of
state may be integrated to yield the scaling function for the free energy. From subsequent
derivatives with respect to the temperature, one obtains then the specific heat and in particular
an equation for the universal ratio A+/A−. Before we come to this relation, we must briefly
discuss the equation of state. The Widom–Griffiths form of the equation of state is given by

y = f (x) (64)

where

y ≡ h/Mδ x ≡ t̄ /M1/β . (65)
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The variables t̄ and h are the normalized reduced temperature and magnetic field,

t̄ = (T − Tc)/T0 h = H/H0 (66)

associated with the usual normalization conditions

f (0) = 1 and f (−1) = 0. (67)

The reduced temperature t̄ differs from t by a constant factor (t̄ = [Tc/T0]t), because of the
second condition in (67). The normalization constants can be expressed in terms of the critical
amplitudes from equation (32),

T0 = B−1/βTc = 1.18(2) H0 = Dc = 1.11(1). (68)

The numbers in the last equation have been obtained in [13] by assuming a special set [12] of
critical exponents

β = 0.3490(6) ν = 0.6723(11) (69)

which implies α ≈ −0.017. The same is true for the equation of state, which was determined
numerically in [13] from simulations with a non-zero magnetic field. Using this equation of
state will therefore give A+/A− for only that particular value of α. Varying α in the range
[−0.0136,−0.0202], as suggested by the error of ν, would result in a large variation of A+/A−

to begin with (see figure 13). Insofar, we consider the following calculation mainly as a test
of the method.

The results for the equation of state were parametrized in [13] by a combination of a
small-x (low-temperature) and a large-x (high-temperature) ansatz. The small-x form xs(y)

was inspired by perturbation theory [26] and incorporates the divergence of the susceptibility
on the coexistence line (x = −1; y = 0) due to the massless Goldstone modes,

xs(y) + 1 = (̃c1 + d̃3)y + c̃2y
1/2 + d̃2y

3/2. (70)

The large-x form xl(y) was derived from Griffiths’s analyticity condition [22]

xl(y) = ay1/γ + by(1−2β)/γ . (71)

The parameter values are

c̃1 + d̃3 = 0.352(30) c̃2 = 0.592(10) (72)

a = 1.2595(30) b = −1.163(20). (73)

Because of the normalization y(0) = 1 we have d̃2 = 1 − (̃c1 + d̃3 + c̃2). The complete
equation of state is obtained by interpolation of the low- and high-temperature parts,

x(y) = xs(y)
y

p

0

y
p

0 + yp
+ xl(y)

yp

y
p

0 + yp
(74)

with p = 6 and y0 = 3.5.
For negative α the universal ratio A+/A− can be calculated from f (x) using the following

formula [27]:

A+

A− = −∫ ∞
0 dx xα−2[f ′(0) − f ′(x) + f ′′(0)x]

f ′(0)/(1 − α) + f ′′(0)/α +
∫ 0
−1 dx(−x)α−2[f ′(0) − f ′(x) + f ′′(0)x]

. (75)

The main contribution to both the nominator and the denominator is f ′′(0)/α. A more
appropriate representation of A+/A− is therefore

A+

A− = 1 + [α/f ′′(0)]FN

1 + [α/f ′′(0)]FD

(76)
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where

FN = − f ′(0)

1 − α
−

∫ 1

0
dx xα−2[f ′(0) − f ′(x) + f ′′(0)x] +

∫ ∞

1
dx xα−2f ′(x) (77)

FD = f ′(0)

1 − α
+

∫ 0

−1
dx(−x)α−2[f ′(0) − f ′(x) + f ′′(0)x]. (78)

Let us denote the integrals in equation (77) by I1 and I2, and that in equation (78) by I3. To
a good approximation, we can calculate the integrals I1 and I3 as well as the derivatives from
the low-temperature equation (70). In order to obtain I2 we first rewrite the integral as

I2 = −f (1) + (2 − α)

∫ ∞

f (1)

dy y
dx

dy
xα−3 (79)

and evaluate the remaining integral from the interpolation formula (74), using for f (1) the
low-temperature value 2.4448. For the derivatives, we find

f ′(0) = 2(3 − c̃1 − d̃3 − 2̃c2)
−1 = 1.366 ± 0.034 (80)

f ′′(0) = [f ′(0)]3 (
3
4 ( c̃1 + d̃3 − 1) + c̃2

) = 0.270 ± 0.064 (81)

and for the integrals

I1 = 0.203 ± 0.02 I2 = 1.749 ± 0.03 I3 = 0.512 ± 0.02. (82)

The errors in the integrals were obtained by Monte Carlo variation of the initial parameters in
equations (72) and (73). When this procedure is also applied to the complete expression (76)
one obtains

A+/A− = 1.12 ± 0.05. (83)

The first conclusion to be drawn from this result is that this method is not well suited
for the calculation of the ratio, at least with the parametrization of the equation of state
from [13]. Though the result (83) is compatible with our directly determined ratio
A+/A− (α = −0.017) = 1.073(3), the error is rather large. The main source of the error
is evidently the inaccurate value of f ′′(0). That this quantity plays an important role is of
course not unexpected, because A+ and A− are the amplitudes of the specific heat, which is
again the second derivative of the free energy density. Our parametrization was not devised
for that purpose, but for a correct description of the Goldstone effect near x = −1 and the
limiting behaviour for x → ∞. That is why it led to a precise determination of Rχ and the
constant cf :

Rχ = lim
x→∞ xγ /f (x) = 1.356(4) cf ≡ lim

x→−1
(1 + x)−2f (x) = 2.85(7). (84)

Campostrini et al have used a different representation of the equation of state [28, 11],
based on Josephson’s parametrization [29] of M, t̄ and H in terms of the variables R and θ and
parametric functions. In order to fix these functions approximately, the authors utilized the
results of an analysis of the high-temperature expansion of an improved lattice Hamiltonian.
The values obtained for A+/A− compare well with our direct determination and have already
been shown in figure 13. The corresponding equation of state differs, however, somewhat in the
low- and medium-temperature regions from the data points in our non-zero field simulations
[13]. The question arises then whether the same data may be described as well in the schemes
introduced by Campostrini et al. Such alternative fits of the data have been carried out by
two of us [30]. The χ2 per degree of freedom of these fits is generally high, in particular for
scheme A of [28]. The fits according to scheme B are considerably better and lead to a ratio
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Figure 14. The specific heat at Tc for L = 36, 48, 72 and 96 as a function of H. The line is the fit
(85) for αc = −0.0078 (ν = 0.671) and ω = 0.79.

Table 3. Survey of the new Monte Carlo simulations at Tc on different lattices. Ncu is the number
of cluster updates between the measurements, Nmeas the number of measurements per H-value in
units of 1000 and NH the number of H-values at which new runs were performed. Ntot is the total
number of H-values where we have data.

L H-range Ncu Nmeas(1000) NH Ntot

36 0.0007–0.05 50–100 30–40 25 36
48 0.0001–0.03 50–100 30–40 30 39
72 0.0001–0.005 60–300 20 15 23
96 0.0001–0.0015 60–80 12–20 8 16

A+/A− = 1.070(13), again compatible with our direct determination. The simultaneously
calculated ratio RC is however much larger (0.165–0.185) than expected from analytical
calculations (0.123–0.130) [31, 25]. We therefore do not pursue this method of calculation
here in more detail.

5. Simulations with H > 0

We have performed additional simulations with a positive magnetic field H on the critical line
to find the remaining critical amplitudes for the specific heat and the longitudinal and transverse
correlation lengths. The linear extensions of the lattices we used were L = 36, 48, 72 and 96.
These measurements were combined with those from [13] to cover the H-range appropriately.
Some of the new data have already been used in [32]. In table 3 we give more details of these
simulations.

5.1. The specific heat on the critical line

In figure 14 we show our specific heat data as a function of the magnetic field H. Since there
are no noticeable systematic finite-size effects, we can use these data to fit them to the ansatz
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Figure 15. The amplitude Ac versus −αc (squares) for ω = 0.79. The full circle shows the value
expected from Cns ; the line is the parametrization (89).

Table 4. The parameters of the fits to equation (85) for some selected αc-values at fixed β = 0.349
and ω = 0.79. The errors were obtained by Monte Carlo variation of the parameters of Cns in
equation (88).

αc α Ac ch χ2/Nf

−0.004 22 −0.007 0.2006(2) 0.0203(1) 1.09
−0.007 81 −0.013 0.2080(3) 0.0344(2) 1.09
−0.010 19 −0.017 0.2131(5) 0.0423(4) 1.10
−0.011 38 −0.019 0.2156(5) 0.0458(4) 1.10
−0.014 92 −0.025 0.2235(7) 0.0546(8) 1.11

C = Cns +
Ac

αc

H−αc (1 + chH
ωνc ). (85)

Here, Cns is the same non-singular term, which we have already determined in
section 3.3 as a function of α (or ν) with the result (54). Because of the dependence of
C on αc and νc the amplitudes Ac and ch depend on two critical exponents. The second
exponent will not however introduce a sizeable variation in the amplitudes. We therefore treat
the exponent β as fixed at the value β = 0.349, in accord with our previous calculations. With
the relations

βδ = 2 − β − α αc = α

2 − β − α
α = αc(2 − β)

1 + αc

(86)

the linear dependence of Cns on 1/α can be rewritten as one on 1/αc:

Cns = c0
ns +

c
p
ns

2 − β

(
1 +

1

αc

)
(87)

= 3.16(4) − 0.1923(3)

αc

. (88)

We took this form of Cns as an input to the fits of C with equation (85). The H-range for
the fits was 0.0001 � H � 0.05. We have convinced ourselves that smaller H-ranges (up to
0.02 or 0.03) lead inside the error bars to the same results for the amplitudes. In table 4 we
present details of the fits for several αc-values, and in figure 15 we show the amplitude Ac

as a function of αc. As in the case of the amplitudes A± the pole of Cns in equation (88) is
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Figure 16. The correlation lengths ξT (a) and ξL (b) at Tc for L = 36, 48, 72 and 96 as a function
of H. The lines are the fits (90) for νc = 0.403 25 and ω = 0.79.

compensated by the corresponding pole term in Ac/αc. We have therefore parametrized the
αc-dependence of Ac in analogy to equation (57) with the fixed value Ac (αc = 0) = 0.1923
and find

Ac = 0.1923 − 1.919(42)αc + 11.6(4.1)α2
c . (89)

From figure 15 we see that this parametrization describes the data very well. As in the study of
the ω-dependence of A± in section 3.4 we found changes of similar size for the amplitude Ac

due to a variation of ω. They lead to an additional error of Ac of size 0.0006 at αc = −0.004 22,
which decreases to 0.0004 at αc = −0.014 92.

5.2. The correlation lengths on the critical line

The simulation results for the transverse and longitudinal correlation lengths are shown in
figures 16(a) and (b). For the transverse correlation length ξT one can hardly detect finite-size
effects, whereas the longitudinal correlation length ξL shows more fluctuations and a systematic
deviation to higher ξL-values, when one decreases the magnetic field H. The smaller the lattice,
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Table 5. The parameters of the fits to equation (90) for some selected νc-values and ω = 0.79.
The χ2/Nf -values varied for ξT between 0.89 and 0.86; for ξL it was 0.67.

νc α ξc
T cT ξc

L cL

0.403 50 −0.007 0.6709(14) 0.024(13) 0.3427(15) −0.258(33)
0.403 25 −0.013 0.6724(14) 0.019(14) 0.3435(15) −0.263(33)
0.403 07 −0.017 0.6735(14) 0.015(14) 0.3441(15) −0.266(33)
0.402 99 −0.019 0.6740(14) 0.013(14) 0.3443(15) −0.268(32)
0.402 74 −0.025 0.6755(14) 0.008(14) 0.3451(15) −0.273(32)

the earlier this behaviour sets in. In order to determine the amplitudes, we have fitted our
results to the following form:

ξT,L = ξc
T ,LH−νc (1 + cT,LHωνc ). (90)

In the transverse case, we used the reweighted data for L = 72 in the H-interval [0.0005,
0.0025], for L = 48 in [0.002, 0.02] and for L = 36 in [0.015, 0.03]. From table 5 we see
that the correction term is essentially zero. Correspondingly, there is no ω-dependence and a
fit with cT ≡ 0 works just as well (even with the same χ2/Nf ), and leads to a slight increase
in the amplitude value, which is of the order of the error given in table 5. The dependence
of the amplitude ξc

T on νc or α is linear but the slope is very small. In order to determine
the longitudinal amplitude ξc

L we have fitted the reweighted data for L = 72 in the H-interval
[0.0005, 0.001 75] together with those for L = 48 in [0.001 75, 0.01]. Here, the correction
term is not zero, but the variation due to ω is still negligible. The νc- or α-dependence is the
same as for ξc

T , and the ratio of the two correlation lengths is a fixed number

ξc
T /ξc

L = 1.957(10) (91)

independent of the critical exponents. It is well known (see [15, 33, 34]) that at zero field on
the coexistence line t < 0 the longitudinal correlation function GL is for large distances |�r|
connected to the transverse one by

GL(�r, t) ≈ 1
2 (N − 1)[GT (�r, t)/M]2 (92)

where in our case N = 2. The relation is expected to hold also for small non-zero fields H
near the phase boundary in the regime of exponential decay implying a factor 2 between the
correlation lengths. It is remarkable that we find approximately such a value for the ratio at
t = 0. A similar observation has been made for the 3D O(4) model [35].

5.3. The stiffness constant on the coexistence line

The stiffness constant ρs(T ) is related to the helicity modulus ϒ [36] by

ρs = ϒ/T (93)

which can be measured in Monte Carlo simulations. This was done, for example, in [37, 38].
Here we follow a different strategy, which we have already applied in [13] to find the
magnetization on the coexistence line. The L or volume dependence of M at fixed J and
fixed small H is described by the ε-expansion of chiral perturbation theory (CPT) in terms of
two low-energy constants. One is the Goldstone-boson-decay constant F, and the other is the
magnetization � of the continuum theory for H = 0 and V → ∞. The square of the constant
F is proportional to the helicity modulus. In our notation, which is different from that in CPT
(see the remark in the last paragraph of [39]) we have

ϒ = F 2/J implying ρs = F 2. (94)
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Figure 17. The inverse of the stiffness constant ρ−1
s = ξT on the coexistence line from chiral

perturbation theory. The solid line is the fit (96) with ν = 0.671 and ω = 0.79.

Table 6. The Goldstone-boson-decay constant F at various J -values from fits on data from lattices
with L in the range [Lmin, Lmax].

J = 1/T F �F Lmin Lmax

0.462 0.1993 0.0096 8,10,12 36,40
0.465 0.2275 0.0060 8,10,12 40,48
0.470 0.2596 0.0050 8,10,12 40,48
0.480 0.3091 0.0018 8,10,12 48
0.500 0.3795 0.0114 8,10,12 48,56
0.525 0.4379 0.0040 8,10,12 48,56
0.550 0.4755 0.0028 8,10,12 56

The formulae, which are needed for the fits to determine the constants, are summarized
in [13] and were taken from [39]. In table 6 we list the results for the Goldstone-boson-
decay constant F at various J -values. We performed simulations at H = 0.0001 on lattices
with linear extensions L = 8, 10, 12, 16, 20, 24, 30, 36, 40, 48 and 56. By construction, the
ε-expansion is only applicable in a range where mπL � 1. This condition translates into the
equation

H
�√
J

�
(

F

L

)2

(95)

and excludes the use of too large L-values. For each J we fitted different sets of data from
lattices between [Lmin, Lmax] and averaged the obtained F-values. The errors on F include the
variations of these results. If we compare our F-values with the corresponding values from
[39] we find generally somewhat lower numbers. This may be due to the fact that the fits
of [39] were performed for fixed-L values only. The transverse correlation length ξT on the
coexistence line is now derived from the inverse of the stiffness constant or F−2. It is plotted
in figure 17. Here, we do not have as many and as accurate data as in figure 16(a). In order to
determine the amplitude ξ−

T we fit our data points up to J = 0.525 to the ansatz

ξT = ξ−
T (−t)−ν(1 + c−

T (−t)ων). (96)
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Table 7. The parameters of the fits to equation (96) for several ν-values and ω = 0.79.

ν α ξ−
T c−

T χ2/Nf

0.6690 −0.007 1.680(52) −0.55(10) 0.08
0.6710 −0.013 1.665(52) −0.54(11) 0.08
0.6723 −0.017 1.655(51) −0.53(11) 0.08
0.6730 −0.019 1.650(51) −0.53(11) 0.08
0.6750 −0.025 1.636(51) −0.52(11) 0.07

Table 8. The universal ratios from equations (28), (29) and (30) as a function of the used exponents
ν and α.

ν α R+
ξ RT

ξ RC RA QT
2

0.6690 −0.007 0.3432(15) 1.163(36) 0.118(4) 0.0515(17) 0.834(21)
0.6710 −0.013 0.3476(18) 1.167(36) 0.125(4) 0.0534(18) 0.849(21)
0.6723 −0.017 0.3505(21) 1.170(36) 0.130(4) 0.0547(18) 0.860(21)
0.6730 −0.019 0.3520(22) 1.171(36) 0.133(5) 0.0554(19) 0.865(21)
0.6750 −0.025 0.3563(27) 1.176(36) 0.142(5) 0.0574(19) 0.881(22)

Table 7 contains the fit parameters for different ν or α-values. We observe, as for ξc
T , a linear

dependence of the amplitude ξ−
T on α with a very small slope. A change in ω by 0.02 leads

only to a shift in ξ−
T of a tenth of the error in table 7.

6. The universal amplitude ratios

After having determined all the amplitudes which appear in equations (27) to (30) we can
calculate the corresponding universal ratios. Since the ratio U0 = A+/A− has already been
discussed in great detail, we start with the ratio Uξ of the correlation lengths for H = 0. From
equation (44) and table 7 we find

Uξ = ξ+/ξ−
T = 0.293(9) (97)

independent of the α-value used. The ε-expansion of this ratio was derived by Hohenberg
et al [23] to O(ε) and extended by Bervillier [40] to O(ε2) resulting in Uξ = 0.27 and 0.33,
respectively. Okabe and Ideura [41] corrected the expansion of Bervillier (not the numerical
value) and computed the ratio in 1/N-expansion to Uξ = 0.140. The ε-expansion results are
comparable in size to our value in (97); the 1/N-expansion result, however, seems to be too
small.

The ratios connecting the specific heat and correlation length amplitudes are related by

R+
ξ = RT

ξ U0
1/dUξ (98)

and they depend on the α used, mainly because of the specific heat amplitudes. In table 8 we
have listed the ratios R+

ξ and RT
ξ . From the α-expansions (44) and (58) we find

R+
ξ = 0.3382(14) − 0.717(96)α + 0.87(1.13)α2. (99)

For RT
ξ one can derive a similar formula representing the values of table 8,

RT
ξ = 1.1580 − 0.696α + 0.97α2 ± 0.036. (100)

There exist several theoretical estimates of R+
ξ which compare well with our result: 0.355(3)

(α = −0.0146) [11] and 0.361(4) [42], both from high-temperature expansions; 0.36 [40]
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from the ε-expansion, and 0.3597(10) [43] and 0.3606(20) [44] from 3D field theory. Apart
from the first result, we could not relate a definite α-value to the respective estimate. The ratio
RT

ξ was calculated from the ε-expansion [23, 40] with the result 1.0(2) [15], well in accord
with our value.

The remaining universal ratios Rχ,RC,RA and QT
2 are all dependent on the amplitude

C+ of the susceptibility and/or the amplitudes B and dc(Dc) of the magnetization. We have
already mentioned that we determined Rχ,B and dc in [13], although for fixed ν = 0.6723.
In the following we proceed as in section 5.1, that is we keep β fixed at 0.349 and assume
in addition that the ν-dependences of Rχ,B and dc are negligible. In table 8 we present the
ratios RC and QT

2 as calculated from

RC = A+RχD−1
c B−1−δ QT

2 = (
ξc
T

/
ξ+

)γ /ν
Rχ(dc/B)δ−1/(1 + 1/δ) (101)

and RA directly from the definition in equation (30), using our newly determined amplitudes
A+, Ac, ξ

c
T and ξ+. We could not find any previous results for RA and QT

2 in the literature;
however, the ratio RC has been calculated theoretically in several ways. From table 8 we see
that RC is increasing with decreasing α, which is due to the factor A+. In comparing our
values to the analytical results, we quote therefore the α-values used. The ratio RC calculated
from 3D field theory in [31] is 0.123(3) (α = −0.012 85), in [25] 0.124 28 (α=−0.010 56);
from the high-temperature expansion in [11] one finds 0.127(6) (α = −0.0146). The results
are in full agreement with our calculation, though the result of [25] is somewhat higher than
the others. The old ε-expansion result 0.103 of Aharony and Hohenberg [45] seems to be too
small.

7. Conclusions

We have calculated the major universal amplitude ratios of the three-dimensional O(2) model
from Monte Carlo simulations. To reach this goal, a large amount of computer time had to
be spent on the cluster of alpha-workstations of the department of physics at the University of
Bielefeld. Most of the computer time went into the production of reliable specific heat data
for the direct determination of A+/A−. Initially, we hoped to improve the accuracy of the
exponent α (or ν) from these data. As it turned out, however, the specific heat data could be
fitted to a whole range of α-values with the same χ2/Nf , extending even to α = 0. This raises
the question whether the experimental shuttle data are really fixing the α-value to exactly
−0.010 56, the same value as in 3D field theory expansions [1]. The positive aspect of the
indifference of the fits to the specific heat data to α-variations was that we could study the
numerical changes induced by these variations in the universal ratio A+/A− and the background
term Cns . As a result, we were able to confirm the conjectured pole (1/α) behaviour of the
amplitudes and the background term and the mutual cancellation of the pole contributions.
The same pole behaviour was observed for the specific heat amplitude on the critical line. The
functional dependence of A+/A− on the α-value used is in complete accordance with all other
ratio results and not far from the phenomenological relation A+/A− = 1 − 4α. We have also
determined A+/A− from the numerical equation of state, but we think that the method relies
too much on the chosen parametrization.

In order to find the amplitude of the transverse correlation length on the coexistence line,
we used chiral perturbation theory. This enabled us to calculate the less known ratios RT

ξ and
Uξ . The latter is independent of the α used, such as the ratio ξc

T

/
ξc
L on the critical line, which

is remarkably close to 2—a prediction expected for T < Tc from the correlation functions
close to the phase boundary. Our results for R+

ξ and RC are in full agreement with the best
theoretical estimates; RA and QT

2 are new and remain untested for the moment.
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